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Abstract

Kinetic modeling is an important issue, whose objective is the accurate determination of the rates of various reactions taking place in a reacting
system. This issue is a pivotal element for the process design and development particularly for novel processes which are based on reactions taking
place between various types of species.

In this paper, the Genetic Algorithms have been used to develop a systematic computational framework for kinetic modeling of various reacting
systems. This framework can be used to find the optimum values of various parameters that exist in the kinetic model of a reacting system. The
Fischer-Tropsch (FT) reactions have been used as the kinetic modeling bench mark. General kinetic models for FT, Water—Gas-shift (WGS) and
overall rates based on Langmuir-Hinshelwood type have been considered and their optimum parameters have been obtained by Genetic Algorithms.
The study shows the obtained model outperforms the other alternative models both in generality and accuracy. Furthermore, the performance of
Binary and Decimal Genetic Algorithms have been compared. The obtained results show that despite its ease of implementation, Decimal encoding

GA has lower performance comparing to Binary encoding GA.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Research on chemical kinetics of heterogeneous catalytic
reactions often requires rigorous kinetics because of complicated
reaction mechanism and adsorption rate limiting steps occurred
by reactants, intermediates and products.

By mechanism illustration, these rate equations are derived
as non-separable and non-linear functions of concentration and
temperature [1-3].

Mathematical modeling of these complex chemical kinet-
ics leads to non-linear parameter estimation problems which
often contains more than one minimum among which one is the
global minimum and the others are local minima. On the other
hand, the gradient-based optimization algorithms usually used
in the parameter estimation of these problems suffer from get-
ting trapped in local minima. Furthermore, convergence of these
methods can be achieved only if they are initiated with a set of
appropriate initial estimates for the decision variables [4].
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To overcome these limitations various approaches based on
evolutionary algorithms have been recently used for optimiza-
tion purposes. One of these algorithms is Genetic Algorithm
which is based on the evolutionary process encountered in
nature, and can be used as a novel optimization algorithm.
The continuing improvements of the price/performance in these
computational systems have made them attractive for various
types of optimization problems. In particular, Genetic Algo-
rithms work very well on mixed (continuous and discrete),
combinatorial problems. They are less susceptible to getting
stuck at local optima than gradient search methods. But they
tend to be computationally expensive [5—7]. The application of
GA in various scientific and engineering disciplines including
chemistry has recently increased [8].

There are a few articles published on kinetic modeling using
GA [9], but most of them are based on implementation of GA
in prediction of good initial estimates for further application in
iterative gradient-based methods [10]. A few of the published
papers implemented a hybrid GA method instead of pure GA
for determination of kinetic parameters [11].

The aim of this work is introduction of GA as a robust
method for kinetic modeling of complex reaction mechanisms.
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Nomenclature

a reaction rate constant

a; lower boundary of domain of a specific variable
b reaction rate constant

bi upper boundary of domain of a specific variable
c reaction rate constant

d reaction rate constant

FT Fischer—Tropsch

K reaction rate constant

K, equilibrium constant Water—Gas-shift
m total number of experimental data
ni number of bits in a specific variable
N population size

OVL  overall synthesis gas consumption
P pressure (MPa)

P, crossover rate

P; precision of a specific variable

P mutation rate

r reaction rate (mol kg;alalyst s7h)
WGS  Water—Gas-shift reaction

Greek letters

o reaction rate constant

B reaction rate constant

X reaction rate constant

8 reaction rate constant

e reaction rate constant

¢ reaction rate constant

Yy reaction rate constant

() reaction rate constant

w random number between 0 and 1

& random number between 0 and 1

Furthermore, since there are two main approaches in the
implementation of Genetic Algorithm (i.e., GA with decimal
phenotypic transformation and GA with binary phenotypic
transformation) the performance of these two approaches have
also been compared in kinetic modeling. Since Fischer—Tropsch
reactions have been recently used to obtain clean and environ-
mentally safer fuel in gas-to-liquid (GTL) and olefin in gas to
olefin (GTO) processes, Fischer—Tropsch and Water—Gas-shift
reactions are used as the kinetic bench mark in this work.

Next section contains a brief overview of both Binary and
Decimal encoding Genetic Algorithms. In Section 3, Fischer—
Tropsch and Water—Gas-shift reactions and various kinetics pub-
lished for these reactions are reviewed and the mathematical
formulation of the kinetic modeling problem is also explained
in this. Section 4 contains the results of kinetic modeling along
with the performance of Binary and Decimal encoded Genetic
Algorithms.

2. Genetic Algorithm

In Genetic Algorithms, the solution procedure starts with
an initial set of random candidate solutions called population.

Each individual in the population which is called a chromo-
some, is a set consists of various segments (called genotypes).
Each genotype represents the value of a decision variable (called
phenotype). Phenotypic transformation is a function which con-
verts phenotypes into genotypes. This transformation should be
invertible in order to get from genotypes to their corresponding
phenotypes.

The chromosomes evolve through successive iterations,
called generation. During each generation, the chromosomes
are compared against each other according to a measure called
fitness. To create the next generation, new chromosomes called
offspring, are formed through the following procedures:

(a) mating two chromosomes from current generation using the
Crossover operator;
(b) modifying the chromosome using the mutation operator.

In the new generation, chromosomes with poor fitness are
replaced by the obtained offsprings. In this procedure, those
chromosomes with better fitness have priority to participate in
the creation of offsprings [12]. The general flowchart of the GA
is presented in Fig. 1. Various stages of GA are elaborated in the
following sections.

2.1. Initialization

2.1.1. Binary GA

To create initial population, a set of chromosomes is ran-
domly generated. Each chromosome is a binary string in which
each gene can take a value of 0 or 1. Each decision variable in
the original optimization problem is mapped to a set of genes
whose length depends on the feasible range and the precision
of the decision variable. As an example, for a decision variable
like x; whose value is between a; and b; and its precision is
pi, the number of required genes can be calculated through the
following equation:

n = int (M) b )
log2

Then, the total number of genes in a chromosome () is calcu-
lated by following equation:

n=S"m @)

The inverse of the phenotypic transformation is used to convert
the genotypes into their corresponding phenotypes [13].

2.1.2. Decimal GA

In this kind of GA, each chromosome is a decimal string
in which each gene can take a decimal number. Therefore, in
Decimal GA neither encoding nor decoding step is required.

2.2. Parent selection

The chromosomes for the next generation are obtained by
mating various pairs of chromosomes from current generation.
These chromosomes are called parent and the results of mat-
ing are called offsprings. In order to keep the diversity of the
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Fig. 1. The flow chart of genetic algorithm.

offsprings, the parents are randomly selected from a set of
chromosomes of current generation called mating pool. How-
ever, in order to let the chromosomes with higher fitness have
more offsprings than those chromosomes with lower fitness, the
chromosomes with higher fitness have more samples in mat-
ing pool than the other ones. Implementation of this approach
is necessary for the enforcement of “Survival of Fittest” prin-
ciple, which is the main objective of the Genetic Algorithms.
This stage is similar for both Binary and Decimal encoded
GA. In order to implement this scenario the mating pool is
filled with two copies of the two fittest individuals, and to
keep the size of mating pool constant the last two individ-
uals with the least fitnesses do not take apart in the mating
mechanism.

2.3. Crossover

Crossover is one of the main genetic operators, in which two
chromosomes are selected as parents whose mating results in two
new chromosomes called offsprings for the next generation. The
performance of Genetic Algorithms heavily depends on the per-
formance of the crossover operator used in GA. The crossover
rate (P.) is defined as the ratio of the number of offspring pro-
duced in each generation to the population size (). This ratio
controls the expected number of chromosomes (P, x N) under-
going the crossover operation. A higher crossover rate increases
the exploitation of solution space.

2.3.1. Binary GA

In Binary GA at least one randomly selected block of genes
are exchanged between parent chromosomes. Various types of
crossover operator have been used in GA, some of these types
for Binary GA are as follows [14]:

1. single point;
2. double point;
3. multi-point.

2.3.2. Decimal GA

In Decimal GA, however, since the chromosome is a bunch
of real variables, application of such a scenario is not possible.
In this case, one of the most commonly used crossover opera-
tor is arithmetic crossover in which the offsprings are obtained
through the following equations:

Offspringl = w x Parentl + (1 — w) x Parent2 3)

Offspring2 = w x Parent2 + (1 — w) x Parentl (@)

2.4. Mutation

Mutation is a background operator which produces sponta-
neous random changes in various chromosomes. A simple way
to achieve mutation would be to alter the value of one or more
genes. Mutation serves the crucial role of exploration of search
space and generation of sufficient variety in the chromosomes
being used in GA.

The mutation rate (Pp,) is defined as the percentage of the total
number of genes at each generation whose values are flipped.
The smaller the mutation rate; the less variety in the candidate
solution exists and the less amount of exploration will occur
[15].

In Binary GA, the mutation operator is usually accomplished
by random selection of a set of genes and flipping their values
from 1 to O or vice versa, where as in Decimal GA the mutation
is done through the following equation:

Mutated gene = original gene x (1 — &) + & x (b; — a;) (®)]

where 7 is a positive random number less than one, and a; and
b; are the interval in which each variable can vary.

2.5. Fitness evaluation

In this step, each chromosome is first decoded to the corre-
sponding decision variables and then its fitness which can be
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Table 1
Kinetic models of Fischer—Tropsch [1,2]

Table 3
Kinetic models of overall syngas consumption [1,2]

Model Kinetic equation Model Kinetic equation
k pégz P;é 5 OVL-I rov. = KPj,
FT-1
2
(1 +aP + bPuyo) OVL-II rovL = KP§ Pty
1/2 p3/4 K Py P
FT-II kFco, P OVL-III roup = Kb Peo
i 1/2 ,3/4 2 Pco + aPy,0
(1 +aPgy P + bPuyo) )
12 KPg. Pco
FTINI _ kPeo P OVLIV royL = ———H2
12 Pco Py, + aPy,o
1+ “PCO + bPHgO
172 KP% Pco
FLIV _ KPeoPu OVL-V rovL = — 12—
2 1 4+ aPco P2
(1 +aPco + bPy,0) coly,
K Py, P
FT-V _ MPeobw, OVL-VI rovL = ——2H27C0
(1 +aPco + bPuy0)* Pco + aPco,
kPco P K Py, P
FT-VI — OVL-VII rovL = o
I+ aPeo +bPmo Pco +aPu0 + b P,
kPco P? 1/2 p1/2
FT-VII _ TOTH, KPy, Feo
1 +aPco + bPy,o OVL-VIII rovL = PRI
(1 +aPiy +bPy?)
1/2
OVL-IX __ KRyho
considered as the degree of suitability of each chromosome - rovL = 2.2
. .. (I+aPco +bPy")
is calculated. In a maximization problem, the fitness can be - 2
assumed to be the value of the objective function, where as in OVL-X rove, = ﬁ
arco

a minimization problem it can be used as the opposite sign of
objective function [16].

3. Kinetic models

Fischer—Tropsch synthesis (FTS), as an alternate process, can
convert the synthesis gas (H,/CO) derived from carbon sources,
such as coal, peat, biomass and natural gas, into hydrocarbons
and oxygenates. In consideration of the limited reserves of crude
oil, today, it continuously attracts renewed interests as an option
for the production of clean transportation fuels and chemical
feedstocks [3].

There is a significant interest in both the process and the
mechanism of Fischer—Tropsch synthesis from the practical and
theoretical viewpoints. The FTS produces a considerable variety
of products that are mainly hydrocarbons and oxygenated com-
pounds. The operating condition has significant influence upon
the product distribution; therefore, it is critically important to
control the selectivity of the product. This is closely related to

Table 2
Kinetic models of Water—Gas-shift [1,2]

Model Kinetic equation
WGS-1 kPco
WGS-1I k(Pco Pu, e — (Pco, Pu,)/ Kp)
k(Pco Piiyo — (Pco, P )/ Kyp)
WGS-III 2 21 ‘2{22/ .
(1 + (@Puyo/ P}
k(P — (P K,
WGSIV (Pco Pu,yo0 — (Pco, Pu,)/Kp)
Pco Py, + aPy,o
k(P — (P K,
WGS.V (Pco Pu,yo — (Pco, Pu,)/Kp)

Pco + aPy,o0 + bPco,

the kinetics and mechanism of the FTS. In the light of the poten-
tial economic and environmental importance of FTS, a detailed
understanding of the process is highly desirable [2].

The Fischer—Tropsch synthesis is a set of complicated parallel
and series reactions involving different extents and determining
altogether the overall catalyst performance. The whole synthe-
sis reaction can be simplified as the combination of the FTS
reactions and the Water—Gas-shift (WGS) reaction [1-3].

CO + 2Hy — —(CH2)- + H2O + 165kJ paraffin (6)
yC+xM — M,C,, bulkcarbide formation @)

2CO — C + CO;, Bouduard reaction ®)

(2n 4+ DHy +nCO — C,Hg,42 +nH>0, olefins ©)]
(2n)Hy + nCO — C,Hy, + nH>0, WGS reaction (10)

M, O, + yHy, — xM + yH;0,
M, Oy + yCO — xM + yCO,

catalystox/red

1)

Table 4
Valid range and resolution of model parameters for Eqs. (18) and (18*)

Parameter Lower limit Upper limit Precision or acceptable values
K 0.0001 5 0.0001

o 0.5 1 0.5

B 0.5 2 0.5,0.75, 1,2

a 0 1 0.01

X 0.5 1 0.5

s 0 0.25 0.25

b 0 35 0.01

€ 1 2 1
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Table 5
Unknown parameters of the model with boundaries and resolution for Egs. (19)
and (19%)

Parameter Lower limit Upper limit Precision or acceptable values
K 0 300 0.01
o 0 0.5 0.5
B 0.5 1 0.5
Kp 0 400 0.1
X 0 1 1

a 0 400 0.01
8 0 0.5 0.5
b 0 100 0.01
e 0 1 1

c 0 200 0.01
[ 0 1 1

® 0 2 1
Table 6

Unknown parameters of the model with boundaries and resolution for Egs. (20)
and (20%)

Parameter Lower limit Upper limit Precision or acceptable values
K 0 1000 0.01

o 0.5 2 05,1,2

B 0 1 0.5

X 0 1 1

a 0 5 0.01

5 0.5 1 0.5

€ 0 2 1

b 0 200 0.01

[ 0 1 1

c 0 200 0.01

4 0 2 0,05,1,2
d 0 300 0.01

y 0 2 1

Table 7

Selected GA parameters

Population size 50
Crossover rate 1

Mutation rate 0.15

Crossover type Single point

1
Co + (1 + 2&) Hy — ~C,H,, + H0, Fischer-Tropsch
n n
(12)

H,O + CO < CO;+H, Water—Gas-shift (13)

The experimental data used in comparison are those reported by
van der Laan [1,2]. These data were derived at constant temper-

Table 8
Results of this study and comparison with other results

ature 503 K and pressure range of 0.8—4.0 MPa in a differential
reactor with different concentrations of reactants.

A general kinetic model is selected based on reasonable reac-
tion mechanisms found in literature. These models are all based
on Langmuir-Hinshelwood—Hougen—Watson model which can
cover most type of FT, WGS and overall syngas rate equations.
Tables 1-3 show various equations representing the rate of FT,
WGS and overall syngas reactions.

Comparing the equations presented in Tables 1-3 one can
come up with three general models with at least eight unknown
parameters (Egs. (12)—(14)) that can be used in a more general
and accurate manner. These equations have been used to model
the rates of FT, WGS and overall reactions. In fact, these models
can be considered as the superset of different types of kinetic
models observed in literatures [1-3].

B
B KPg, P, 14
(I+ (apco/PHz) + bPy,0)
K((Pco Pu,0/ Pyi,) — (Pco, sz/Kp))
rwGs = 5 . PR (15)
(x + (@Puyo/ Py,) + bPcg + cPco,)
KPg P,
rovL = (16)

(X +aPo Py, +bP) o + cPh + dPco,)”
The optimum values of unknown parameters are obtained such
the overall error in the prediction of the rate of reactions is
minimized using Genetic Algorithm. The overall error defined
as average absolute relative deviation (AARD) is calculated
through the following equation:

m
Texp,i — Fcal,i

AARD = (17)

1S
m i1 Texp,i

4. Results of kinetic modeling

Decision variables used in this study with their corresponding
valid intervals are shown in Tables 4—6. It should be noted that in
mechanisms proposed for FT and WGS reactions, the powers of
the species concentration are usually integer numbers, although
sometimes some of them may take value of 0.5 (if there is a
possibility of dissociation of molecule and atomic adsorption
on the catalytic site). So the interval and resolution of discrete
parameters are selected as shown in Tables 4-6 to be able to
adapt to the mechanism of the reaction.

Model Average percent Model Average percent Model Average percent
relative error relative error relative error

(18) 27.059 (19) 26.55797 (20) 22.80169

(18%) 27.06461 (19%) 27.83614 (20%) 22.80169

FT-II12 42.89747 WGS-I5 86.82425

FT-IV2 54.49429 WGS-116 84.88095

FT-1I13 54.93696
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Fig. 2. Experimental rate of FT reaction vs. calculated rate, model no. (18).

In order to obtain the optimum values of the parameters of the
reaction rate equations by Genetic Algorithm negative AARD is
used as the fitness function of the Genetic Algorithm. A popula-
tion size of 50 chromosomes (N = 50) was selected in this study.
Because of the uncertainty in model parameters, large intervals
are selected for frequency factors and activation parameters.

The convergence criterion used in the GA is to get to 100%
similarity between chromosomes in the population. Table 7
shows the values of the parameters used in the implemented
GA [17]. The optimum kinetic model obtained through Binary
and Decimal encoded GA are shown in Egs. (18)—(20) and
(18%*)—(20%*), respectively. Percent relative errors of theses mod-
els and selected models from literature are summarized in
Table 8.
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Fig. 4. Experimental rate of FT reaction vs. calculated rate, model no. (FT-I112).
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Fig. 5. Experimental rate of FT reaction vs. calculated rate, model no. (FT-IV2).
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Fig. 6. Experimental rate of FT reaction vs. calculated rate, model no. (FT-III3).

639.04 Py, Py
1/2

2
(3.93P.; + 165.47 Py, + 295.67 Pco,)

rovL = (20%)

5. Kinetic model validation

Figs. 2—-12 show the performance of various models for FT,
WGS and overall reactions. These figures show that the pro-
posed models along with their optimum parameters are more
accurate than those models published in the literature. It should
also be noted that the proposed model satisfies all physical crite-
ria considered in the models proposed by other researchers and
the higher accuracy is due to the more general form of the kinetic
model and the fact that the obtained optimum values is either
the global optimum or its closest possible point.
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Fig. 7. Experimental rate of WGS reaction vs. calculated rate, model no. (19).
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Fig. 8. Experimental rate of WGS reaction vs. calculated rate, model no. (19%).

6. Comparing Binary and Decimal encoded GA
performance

Despite the fact that Decimal encoded GA has been used by
many researchers to solve optimization problems in both sci-
entific and engineering problems, it cannot be considered as
an appropriate descendant of original GA. This is the fact that
has been mentioned by various researchers studying the per-
formance of various flavors of Genetic Algorithms including
Goldberg [18] and Hertz and Kobler [19]. Although Decimal
encoded GA can be tuned and designed to results in better perfor-
mance for a specific problem, this better performance is usually
obtained at the expense of its generality. In other word, as Gold-
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Fig. 9. Experimental rate of WGS reaction vs. calculated rate, model no. (WGS-
15).
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Fig. 10. Experimental rate of WGS reaction vs. calculated rate, model no.
(WGS-1I6).

berg has mentioned one of the pivotal benefits of the original
Genetic Algorithm (i.e., Binary GA) is its generality and inde-
pendence of the type of problem being solved [18]. Although
one might tune the algorithm to perform better (i.e., converge
faster) for a specific class of problem, it degrades the generality
of the GA and its resemblance to what happens in nature.

In this paper, we have studied the performance of Binary
GA and Decimal encoded GA for kinetic modeling. Figs. 13-15
show the performance of these two approaches of GA for the
kinetic modeling bench mark of this study. According to these
figures, in spite of what has been claimed by researchers using
Decimal encoded GA, Binary GA outperforms the Decimal
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Fig. 11. Experimental rate of overall syngas consumption vs. calculated rate,
model no. (20).
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Fig. 12. Experimental rate of overall syngas consumption vs. calculated rate,
model no. (20%).

encoded GA both in speed and the possibility to get to the global
optimum. Therefore, one can conclude, Binary GA performs bet-
ter than Decimal encoded GA in the field of kinetic modeling,
although according to Schemata theorem [20] this superiority
has been proved in a general manner along with the robust-
ness of Binary GA. In other words, considering the generality
and robustness of Binary GA it seems that, it would get to the
global optimum of various problems including kinetic model-
ing in a more general manner and with less tuning parameters.
This makes the implementation of Binary GA in kinetic mod-
eling almost independent of the reactions taking place in the
system.

It should be noted that we have used the original versions of
both Decimal encoded and Binary GA and have not tuned them
in order to keep them in their most general forms appropriate
to solve various problems. Otherwise, one can tune both of the

m—Ritwise GA
—— Decimal GA

| .

10000 100000

1 10 100 1000
Generation

Fig. 13. Comparison of Decimal GA and bitwise GA for FT reaction.
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Fig. 14. Comparison of Decimal GA and bitwise GA for WGS reaction.
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Fig. 15. Experimental comparison of Decimal GA and bitwise GA for overall
reaction.

approaches in GA to make them perform better for this specific
problem. However, this would lead to biased and unfair results.

7. Conclusion

Genetic Algorithms have been used in kinetic modeling, due
to their ability to get the global optimum or its closest point.
Fischer—Tropsch reactions have been selected as the kinetic
modeling bench mark, due to their recent impacts on chemical
industries particularly to produce more environmental friendly
fuels. The proposed kinetic models outperform their alternatives
in both accuracy and generality. Furthermore, the performance
of Binary and Decimal encoded GA have been compared. It has
been shown that the original version of Binary GA outperforms
the Decimal encoded GA in both the convergence speed and pos-
sibility to get the closer point to the global optimum in a more

general and less problem dependant manner. This is the same
result obtained by other researchers working on other types of
optimization problems.

Due to flexibility and generality of Genetic Algorithm, it
seems to be a useful technique with lots of potentials in deter-
mination of optimum kinetic model corresponding to a set of
complex reactions.
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