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Which method is better for the kinetic modeling:
Decimal encoded or Binary Genetic Algorithm?
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bstract

Kinetic modeling is an important issue, whose objective is the accurate determination of the rates of various reactions taking place in a reacting
ystem. This issue is a pivotal element for the process design and development particularly for novel processes which are based on reactions taking
lace between various types of species.

In this paper, the Genetic Algorithms have been used to develop a systematic computational framework for kinetic modeling of various reacting
ystems. This framework can be used to find the optimum values of various parameters that exist in the kinetic model of a reacting system. The
ischer–Tropsch (FT) reactions have been used as the kinetic modeling bench mark. General kinetic models for FT, Water–Gas-shift (WGS) and
verall rates based on Langmuir–Hinshelwood type have been considered and their optimum parameters have been obtained by Genetic Algorithms.

he study shows the obtained model outperforms the other alternative models both in generality and accuracy. Furthermore, the performance of
inary and Decimal Genetic Algorithms have been compared. The obtained results show that despite its ease of implementation, Decimal encoding
A has lower performance comparing to Binary encoding GA.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Research on chemical kinetics of heterogeneous catalytic
eactions often requires rigorous kinetics because of complicated
eaction mechanism and adsorption rate limiting steps occurred
y reactants, intermediates and products.

By mechanism illustration, these rate equations are derived
s non-separable and non-linear functions of concentration and
emperature [1–3].

Mathematical modeling of these complex chemical kinet-
cs leads to non-linear parameter estimation problems which
ften contains more than one minimum among which one is the
lobal minimum and the others are local minima. On the other
and, the gradient-based optimization algorithms usually used
n the parameter estimation of these problems suffer from get-

ing trapped in local minima. Furthermore, convergence of these

ethods can be achieved only if they are initiated with a set of
ppropriate initial estimates for the decision variables [4].
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To overcome these limitations various approaches based on
volutionary algorithms have been recently used for optimiza-
ion purposes. One of these algorithms is Genetic Algorithm
hich is based on the evolutionary process encountered in
ature, and can be used as a novel optimization algorithm.
he continuing improvements of the price/performance in these
omputational systems have made them attractive for various
ypes of optimization problems. In particular, Genetic Algo-
ithms work very well on mixed (continuous and discrete),
ombinatorial problems. They are less susceptible to getting
tuck at local optima than gradient search methods. But they
end to be computationally expensive [5–7]. The application of
A in various scientific and engineering disciplines including

hemistry has recently increased [8].
There are a few articles published on kinetic modeling using

A [9], but most of them are based on implementation of GA
n prediction of good initial estimates for further application in
terative gradient-based methods [10]. A few of the published

apers implemented a hybrid GA method instead of pure GA
or determination of kinetic parameters [11].

The aim of this work is introduction of GA as a robust
ethod for kinetic modeling of complex reaction mechanisms.

mailto:masoori@che.sharif.edu
dx.doi.org/10.1016/j.cej.2006.11.017
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Nomenclature

a reaction rate constant
ai lower boundary of domain of a specific variable
b reaction rate constant
bi upper boundary of domain of a specific variable
c reaction rate constant
d reaction rate constant
FT Fischer–Tropsch
K reaction rate constant
Kp equilibrium constant Water–Gas-shift
m total number of experimental data
ni number of bits in a specific variable
N population size
OVL overall synthesis gas consumption
P pressure (MPa)
Pc crossover rate
Pi precision of a specific variable
Pm mutation rate
r reaction rate (mol kg−1

catalyst s−1)
WGS Water–Gas-shift reaction

Greek letters
α reaction rate constant
β reaction rate constant
χ reaction rate constant
δ reaction rate constant
ε reaction rate constant
φ reaction rate constant
γ reaction rate constant
ϕ reaction rate constant
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ω random number between 0 and 1
ξ random number between 0 and 1

urthermore, since there are two main approaches in the
mplementation of Genetic Algorithm (i.e., GA with decimal
henotypic transformation and GA with binary phenotypic
ransformation) the performance of these two approaches have
lso been compared in kinetic modeling. Since Fischer–Tropsch
eactions have been recently used to obtain clean and environ-
entally safer fuel in gas-to-liquid (GTL) and olefin in gas to

lefin (GTO) processes, Fischer–Tropsch and Water–Gas-shift
eactions are used as the kinetic bench mark in this work.

Next section contains a brief overview of both Binary and
ecimal encoding Genetic Algorithms. In Section 3, Fischer–
ropsch and Water–Gas-shift reactions and various kinetics pub-

ished for these reactions are reviewed and the mathematical
ormulation of the kinetic modeling problem is also explained
n this. Section 4 contains the results of kinetic modeling along
ith the performance of Binary and Decimal encoded Genetic
lgorithms.
. Genetic Algorithm

In Genetic Algorithms, the solution procedure starts with
n initial set of random candidate solutions called population.

m
T
i
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ach individual in the population which is called a chromo-
ome, is a set consists of various segments (called genotypes).
ach genotype represents the value of a decision variable (called
henotype). Phenotypic transformation is a function which con-
erts phenotypes into genotypes. This transformation should be
nvertible in order to get from genotypes to their corresponding
henotypes.

The chromosomes evolve through successive iterations,
alled generation. During each generation, the chromosomes
re compared against each other according to a measure called
tness. To create the next generation, new chromosomes called
ffspring, are formed through the following procedures:

(a) mating two chromosomes from current generation using the
crossover operator;

b) modifying the chromosome using the mutation operator.

In the new generation, chromosomes with poor fitness are
eplaced by the obtained offsprings. In this procedure, those
hromosomes with better fitness have priority to participate in
he creation of offsprings [12]. The general flowchart of the GA
s presented in Fig. 1. Various stages of GA are elaborated in the
ollowing sections.

.1. Initialization

.1.1. Binary GA
To create initial population, a set of chromosomes is ran-

omly generated. Each chromosome is a binary string in which
ach gene can take a value of 0 or 1. Each decision variable in
he original optimization problem is mapped to a set of genes
hose length depends on the feasible range and the precision
f the decision variable. As an example, for a decision variable
ike xi whose value is between ai and bi and its precision is
i, the number of required genes can be calculated through the
ollowing equation:

i = int

(
log(bi − ai)/pi

log 2

)
+ 1 (1)

hen, the total number of genes in a chromosome (nt) is calcu-
ated by following equation:

t =
∑

ni (2)

he inverse of the phenotypic transformation is used to convert
he genotypes into their corresponding phenotypes [13].

.1.2. Decimal GA
In this kind of GA, each chromosome is a decimal string

n which each gene can take a decimal number. Therefore, in
ecimal GA neither encoding nor decoding step is required.

.2. Parent selection
The chromosomes for the next generation are obtained by
ating various pairs of chromosomes from current generation.
hese chromosomes are called parent and the results of mat-

ng are called offsprings. In order to keep the diversity of the
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Fig. 1. The flow ch

ffsprings, the parents are randomly selected from a set of
hromosomes of current generation called mating pool. How-
ver, in order to let the chromosomes with higher fitness have
ore offsprings than those chromosomes with lower fitness, the

hromosomes with higher fitness have more samples in mat-
ng pool than the other ones. Implementation of this approach
s necessary for the enforcement of “Survival of Fittest” prin-
iple, which is the main objective of the Genetic Algorithms.
his stage is similar for both Binary and Decimal encoded
A. In order to implement this scenario the mating pool is
lled with two copies of the two fittest individuals, and to
eep the size of mating pool constant the last two individ-
als with the least fitnesses do not take apart in the mating
echanism.

.3. Crossover

Crossover is one of the main genetic operators, in which two
hromosomes are selected as parents whose mating results in two
ew chromosomes called offsprings for the next generation. The
erformance of Genetic Algorithms heavily depends on the per-
ormance of the crossover operator used in GA. The crossover
ate (Pc) is defined as the ratio of the number of offspring pro-
uced in each generation to the population size (N). This ratio
ontrols the expected number of chromosomes (Pc × N) under-
oing the crossover operation. A higher crossover rate increases
he exploitation of solution space.

.3.1. Binary GA
In Binary GA at least one randomly selected block of genes

re exchanged between parent chromosomes. Various types of
rossover operator have been used in GA, some of these types
or Binary GA are as follows [14]:
. single point;

. double point;

. multi-point.

2

s

genetic algorithm.

.3.2. Decimal GA
In Decimal GA, however, since the chromosome is a bunch

f real variables, application of such a scenario is not possible.
n this case, one of the most commonly used crossover opera-
or is arithmetic crossover in which the offsprings are obtained
hrough the following equations:

ffspring1 = ω × Parent1 + (1 − ω) × Parent2 (3)

ffspring2 = ω × Parent2 + (1 − ω) × Parent1 (4)

.4. Mutation

Mutation is a background operator which produces sponta-
eous random changes in various chromosomes. A simple way
o achieve mutation would be to alter the value of one or more
enes. Mutation serves the crucial role of exploration of search
pace and generation of sufficient variety in the chromosomes
eing used in GA.

The mutation rate (Pm) is defined as the percentage of the total
umber of genes at each generation whose values are flipped.
he smaller the mutation rate; the less variety in the candidate
olution exists and the less amount of exploration will occur
15].

In Binary GA, the mutation operator is usually accomplished
y random selection of a set of genes and flipping their values
rom 1 to 0 or vice versa, where as in Decimal GA the mutation
s done through the following equation:

utated gene = original gene × (1 − ξ) + ξ × (bi − ai) (5)

here η is a positive random number less than one, and ai and
i are the interval in which each variable can vary.
.5. Fitness evaluation

In this step, each chromosome is first decoded to the corre-
ponding decision variables and then its fitness which can be
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Table 1
Kinetic models of Fischer–Tropsch [1,2]

Model Kinetic equation

FT-I
kP

1/2
CO2

P
1/2
H2O

(1 + aP
1/2
CO + bPH2O)

2

FT-II
kP

1/2
CO2

P
3/4
H2O

(1 + aP
1/2
CO P

3/4
H2

+ bPH2O)
2

FT-III
kP

1/2
CO PH2

1 + aP
1/2
CO + bPH2O

FT-IV
kPCOP

1/2
H2

(1 + aPCO + bPH2O)2

FT-V
kPCOPH2

(1 + aPCO + bPH2O)2

FT-VI
kPCOPH2

1 + aPCO + bPH2O
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Table 3
Kinetic models of overall syngas consumption [1,2]

Model Kinetic equation

OVL-I rOVL = KPα
H2

OVL-II rOVL = KPα
H2

P
β

CO

OVL-III rOVL = KPH2 PCO

PCO + aPH2O

OVL-IV rOVL =
KP2

H2
PCO

PCOPH2 + aPH2O

OVL-V rOVL =
KP2

H2
PCO

1 + aPCOP2
H2

OVL-VI rOVL = KPH2 PCO

PCO + aPCO2

OVL-VII rOVL = KPH2 PCO

PCO + aPH2O + bP
ϕ

CO2

OVL-VIII rOVL =
KP

1/2
H2

P
1/2
CO

(1 + aP
1/2
CO + bP

1/2
H2

)
2

OVL-IX rOVL =
KP

1/2
H2

PCO

(1 + aPCO + bP
1/2
H )

2

O

t
t
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a
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y

2

T-VII
kPCOP2

H2

1 + aPCO + bPH2O

onsidered as the degree of suitability of each chromosome
s calculated. In a maximization problem, the fitness can be
ssumed to be the value of the objective function, where as in
minimization problem it can be used as the opposite sign of

bjective function [16].

. Kinetic models

Fischer–Tropsch synthesis (FTS), as an alternate process, can
onvert the synthesis gas (H2/CO) derived from carbon sources,
uch as coal, peat, biomass and natural gas, into hydrocarbons
nd oxygenates. In consideration of the limited reserves of crude
il, today, it continuously attracts renewed interests as an option
or the production of clean transportation fuels and chemical
eedstocks [3].

There is a significant interest in both the process and the
echanism of Fischer–Tropsch synthesis from the practical and

heoretical viewpoints. The FTS produces a considerable variety

f products that are mainly hydrocarbons and oxygenated com-
ounds. The operating condition has significant influence upon
he product distribution; therefore, it is critically important to
ontrol the selectivity of the product. This is closely related to

able 2
inetic models of Water–Gas-shift [1,2]

odel Kinetic equation

GS-I kPCO

GS-II k(PCOPH2E − (PCO2 PH2 )/Kp)

GS-III
k(PCOPH2O − (PCO2 P

1/2
H2

)/Kp)

(1 + (aPH2O/P
1/2
H2

))
2

GS-IV
k(PCOPH2O − (PCO2 PH2 )/Kp)

PCOPH2 + aPH2O

GS-V
k(PCOPH2O − (PCO2 PH2 )/Kp)

PCO + aPH2O + bPCO2

(

(

T
V

P

K
α

β

a
χ

δ

b
ε

2

VL-X rOVL = KPH2 PCO

(1 + aPCO)2

he kinetics and mechanism of the FTS. In the light of the poten-
ial economic and environmental importance of FTS, a detailed
nderstanding of the process is highly desirable [2].

The Fischer–Tropsch synthesis is a set of complicated parallel
nd series reactions involving different extents and determining
ltogether the overall catalyst performance. The whole synthe-
is reaction can be simplified as the combination of the FTS
eactions and the Water–Gas-shift (WGS) reaction [1–3].

O + 2H2 → –(CH2)– + H2O + 165 kJ paraffin (6)

C + xM → MxCy, bulk carbide formation (7)

CO → C + CO2, Bouduard reaction (8)

2n + 1)H2 + nCO → CnH2n+2 + nH2O, olefins (9)
2n)H2 + nCO → CnH2n + nH2O, WGS reaction (10)

MxOy + yH2 → xM + yH2O, catalyst ox/red

MxOy + yCO → xM + yCO2
(11)

able 4
alid range and resolution of model parameters for Eqs. (18) and (18*)

arameter Lower limit Upper limit Precision or acceptable values

0.0001 5 0.0001
0.5 1 0.5
0.5 2 0.5, 0.75, 1, 2
0 1 0.01
0.5 1 0.5
0 0.25 0.25
0 35 0.01
1 2 1



R.B. Boozarjomehry, M. Masoori / Chemical

Table 5
Unknown parameters of the model with boundaries and resolution for Eqs. (19)
and (19*)

Parameter Lower limit Upper limit Precision or acceptable values

K 0 300 0.01
α 0 0.5 0.5
β 0.5 1 0.5
Kp 0 400 0.1
χ 0 1 1
a 0 400 0.01
δ 0 0.5 0.5
b 0 100 0.01
ε 0 1 1
c 0 200 0.01
Ф 0 1 1
ϕ 0 2 1

Table 6
Unknown parameters of the model with boundaries and resolution for Eqs. (20)
and (20*)

Parameter Lower limit Upper limit Precision or acceptable values

K 0 1000 0.01
α 0.5 2 0.5, 1, 2
β 0 1 0.5
χ 0 1 1
a 0 5 0.01
δ 0.5 1 0.5
ε 0 2 1
b 0 200 0.01
Ф 0 1 1
c 0 200 0.01
ϕ 0 2 0, 0.5, 1, 2
d 0 300 0.01
γ 0 2 1

Table 7
Selected GA parameters

Population size 50
C
M
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rossover rate 1
utation rate 0.15
rossover type Single point

O +
(

1 + m

2n

)
H2 → 1

n
CnHm + H2O, Fischer-Tropsch

(12)
2O + CO ↔ CO2 + H2 Water–Gas-shift (13)

he experimental data used in comparison are those reported by
an der Laan [1,2]. These data were derived at constant temper-

p
o
p
a

able 8
esults of this study and comparison with other results

odel Average percent
relative error

Model

18) 27.059 (19)
18*) 27.06461 (19*)
T-III2 42.89747 WGS-I5
T-IV2 54.49429 WGS-II6
T-III3 54.93696
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ture 503 K and pressure range of 0.8–4.0 MPa in a differential
eactor with different concentrations of reactants.

A general kinetic model is selected based on reasonable reac-
ion mechanisms found in literature. These models are all based
n Langmuir–Hinshelwood–Hougen–Watson model which can
over most type of FT, WGS and overall syngas rate equations.
ables 1–3 show various equations representing the rate of FT,
GS and overall syngas reactions.
Comparing the equations presented in Tables 1–3 one can

ome up with three general models with at least eight unknown
arameters (Eqs. (12)–(14)) that can be used in a more general
nd accurate manner. These equations have been used to model
he rates of FT, WGS and overall reactions. In fact, these models
an be considered as the superset of different types of kinetic
odels observed in literatures [1–3].

FT = KPα
COP

β
H2

(1 + (aP
χ
CO/Pδ

H2
) + bPH2O)

ε (14)

WGS = K((PCOPH2O/Pα
H2

) − (PCO2P
β
H2

/Kp))

(χ + (aPH2O/Pδ
H2

) + bPε
CO + cP

φ
CO2

)
ϕ (15)

OVL = KPα
H2

P
β
CO

(χ + aPδ
COPε

H2
+ bP

φ
H2O + cP

ϕ
H2

+ dPCO2 )
γ (16)

he optimum values of unknown parameters are obtained such
he overall error in the prediction of the rate of reactions is

inimized using Genetic Algorithm. The overall error defined
s average absolute relative deviation (AARD) is calculated
hrough the following equation:

ARD = 1

m

i=m∑
i=1

rexp,i − rcal,i

rexp,i

(17)

. Results of kinetic modeling

Decision variables used in this study with their corresponding
alid intervals are shown in Tables 4–6. It should be noted that in
echanisms proposed for FT and WGS reactions, the powers of

he species concentration are usually integer numbers, although
ometimes some of them may take value of 0.5 (if there is a

ossibility of dissociation of molecule and atomic adsorption
n the catalytic site). So the interval and resolution of discrete
arameters are selected as shown in Tables 4–6 to be able to
dapt to the mechanism of the reaction.

Average percent
relative error

Model Average percent
relative error

26.55797 (20) 22.80169
27.83614 (20*) 22.80169
86.82425
84.88095
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ig. 2. Experimental rate of FT reaction vs. calculated rate, model no. (18).

In order to obtain the optimum values of the parameters of the
eaction rate equations by Genetic Algorithm negative AARD is
sed as the fitness function of the Genetic Algorithm. A popula-
ion size of 50 chromosomes (N = 50) was selected in this study.
ecause of the uncertainty in model parameters, large intervals
re selected for frequency factors and activation parameters.

The convergence criterion used in the GA is to get to 100%
imilarity between chromosomes in the population. Table 7
hows the values of the parameters used in the implemented
A [17]. The optimum kinetic model obtained through Binary

nd Decimal encoded GA are shown in Eqs. (18)–(20) and
18*)–(20*), respectively. Percent relative errors of theses mod-
ls and selected models from literature are summarized in
able 8.
FT = 0.07784PCOP
1/2
H2

1 + 1.3P
1/2
CO

(18)

ig. 3. Experimental rate of FT reaction vs. calculated rate, model no. (18*).

r

F

ig. 4. Experimental rate of FT reaction vs. calculated rate, model no. (FT-III2).

FT = 0.0779PCOP
1/2
H2

1 + 1.3P
1/2
CO

(18*)

WGS = 27.4058(PCOPH2O − (PCO2PH2/327.68))

(301.5PH2O/P
1/2
H2

) + 31.85PCO + 74.07PCO2

(19)

WGS = 21.90470(PCOPH2O − (PCO2P
1/2
H2

/202.76))

1 + (263.68PH2O/P
1/2
H2

) + 10.54PCO + 79.75PCO2

(19*)
OVL = 639.04PH2PCO

(3.93P
1/2
CO + 165.47PH2 + 295.67PCO2 )

2 (20)

ig. 5. Experimental rate of FT reaction vs. calculated rate, model no. (FT-IV2).
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encoded GA can be tuned and designed to results in better perfor-
ig. 6. Experimental rate of FT reaction vs. calculated rate, model no. (FT-III3).

OVL = 639.04PH2P
1/2
CO

(3.93P
1/2
CO + 165.47PH2 + 295.67PCO2 )

2 (20*)

. Kinetic model validation

Figs. 2–12 show the performance of various models for FT,
GS and overall reactions. These figures show that the pro-

osed models along with their optimum parameters are more
ccurate than those models published in the literature. It should
lso be noted that the proposed model satisfies all physical crite-

ia considered in the models proposed by other researchers and
he higher accuracy is due to the more general form of the kinetic

odel and the fact that the obtained optimum values is either
he global optimum or its closest possible point.

ig. 7. Experimental rate of WGS reaction vs. calculated rate, model no. (19).

m
o

F
I

ig. 8. Experimental rate of WGS reaction vs. calculated rate, model no. (19*).

. Comparing Binary and Decimal encoded GA
erformance

Despite the fact that Decimal encoded GA has been used by
any researchers to solve optimization problems in both sci-

ntific and engineering problems, it cannot be considered as
n appropriate descendant of original GA. This is the fact that
as been mentioned by various researchers studying the per-
ormance of various flavors of Genetic Algorithms including
oldberg [18] and Hertz and Kobler [19]. Although Decimal
ance for a specific problem, this better performance is usually
btained at the expense of its generality. In other word, as Gold-

ig. 9. Experimental rate of WGS reaction vs. calculated rate, model no. (WGS-
5).
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ig. 10. Experimental rate of WGS reaction vs. calculated rate, model no.
WGS-II6).

erg has mentioned one of the pivotal benefits of the original
enetic Algorithm (i.e., Binary GA) is its generality and inde-
endence of the type of problem being solved [18]. Although
ne might tune the algorithm to perform better (i.e., converge
aster) for a specific class of problem, it degrades the generality
f the GA and its resemblance to what happens in nature.

In this paper, we have studied the performance of Binary
A and Decimal encoded GA for kinetic modeling. Figs. 13–15

how the performance of these two approaches of GA for the

inetic modeling bench mark of this study. According to these
gures, in spite of what has been claimed by researchers using
ecimal encoded GA, Binary GA outperforms the Decimal

ig. 11. Experimental rate of overall syngas consumption vs. calculated rate,
odel no. (20).

e
s

b
i
t

ig. 12. Experimental rate of overall syngas consumption vs. calculated rate,
odel no. (20*).

ncoded GA both in speed and the possibility to get to the global
ptimum. Therefore, one can conclude, Binary GA performs bet-
er than Decimal encoded GA in the field of kinetic modeling,
lthough according to Schemata theorem [20] this superiority
as been proved in a general manner along with the robust-
ess of Binary GA. In other words, considering the generality
nd robustness of Binary GA it seems that, it would get to the
lobal optimum of various problems including kinetic model-
ng in a more general manner and with less tuning parameters.
his makes the implementation of Binary GA in kinetic mod-
ling almost independent of the reactions taking place in the
ystem.
It should be noted that we have used the original versions of
oth Decimal encoded and Binary GA and have not tuned them
n order to keep them in their most general forms appropriate
o solve various problems. Otherwise, one can tune both of the

Fig. 13. Comparison of Decimal GA and bitwise GA for FT reaction.
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Fig. 14. Comparison of Decimal GA and bitwise GA for WGS reaction.
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ig. 15. Experimental comparison of Decimal GA and bitwise GA for overall
eaction.

pproaches in GA to make them perform better for this specific
roblem. However, this would lead to biased and unfair results.

. Conclusion

Genetic Algorithms have been used in kinetic modeling, due
o their ability to get the global optimum or its closest point.
ischer–Tropsch reactions have been selected as the kinetic
odeling bench mark, due to their recent impacts on chemical

ndustries particularly to produce more environmental friendly
uels. The proposed kinetic models outperform their alternatives
n both accuracy and generality. Furthermore, the performance

f Binary and Decimal encoded GA have been compared. It has
een shown that the original version of Binary GA outperforms
he Decimal encoded GA in both the convergence speed and pos-
ibility to get the closer point to the global optimum in a more

[

[
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eneral and less problem dependant manner. This is the same
esult obtained by other researchers working on other types of
ptimization problems.

Due to flexibility and generality of Genetic Algorithm, it
eems to be a useful technique with lots of potentials in deter-
ination of optimum kinetic model corresponding to a set of

omplex reactions.
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